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Investigation is continued on the applicability of applied plate bending theory, based on 

the Kirchhoff hypothesis, to the solution of stress concentration problems by means of the 

method developed in [ 1 and 21. 

1. Consider the problem of axisymmetric bending of an infinite plate of a thickness 

2h with an opening which is bounded by the circular cylindrical surface r with radius a. 

Introduce dimensionless coordinates s, n and [(Fig. 1). Assume that the flat faces of the 

plate are traction-free while the cylindrical surface is subjected to a normal load N=k gm, 

and is free of shear. Here, m is an odd integer, k is a constant of proportionality and 

h= h/a. 

Applying the method described in [l and 21, we obtain expressions for the stresses on 

the boundary r, which are of the form 

(1.1) 



On stress concentrations in thick plates 1147 

+ (v - 1) $q,,=, 

+ ; [(v- 1) sp(5) 
1 

$4 - r,n,, (s;)cpa - :!npK) cp2 
I 
I+... J 

p=1 

ZnzIr=-2tlLh -g 
aA$o 

rprp(5) cp2 + t'tlh+ (1 - 5') 7 
I- 

p=1 
7I=O 

- ; rp (5) (Tp%3 + + cpPj} + * . . 
p=1 

(1.3) 

p=1 p=1 

7,, = 0, z,, = 0, 
1 

v=m 
(1.5) 

FIG. 1 

Here ~1 is the shear modulus, (T is Poisson’s 

ratio (in calculations d = l/s); n,, (Q, ‘i, (&J, 

rp (0, and rp (5) are known functions of 4 

given in [ 1 and 31, 2y 
P 

are the roots of function 

z-t sin (2) - 1. Summation is carried out over 

the roots which have a positive real part. 

The first 80 of these roots were obtained 

with aid of an electronic computer. Table 1 con- 

tains the values of forty roots which are located 

in the first quadrant. The roots in the fourth 

quadrant are conjugates of the above. The roots 

are numbered in the order of increasing magnitude, 

the odd-numbered roots being those in the first 

quadrant while the even-numbered roots are in the fourth quadrant. 

In (1.1) to (1.4), the quantities tii (n) are biharmonic functions for the exterior of a 

circle, with $0 (n) being the solution for the bending of an infinite plate with a circular 

opening as given by the applied theory. The boundary values of the functions $ri (n) and 

the constants c 
Pi 

are obtained from the boundary conditions on r by means of an infinite 

system of equations. 

The boundary conditions for I/Y, (n) are given by 

It is readily seen that the above coincide with the conditions of the applied plate 

bending theory based on the Kirchhoff hypothesis. 

From (1.6). we have 
k :j 

+o=Bo-~qv+l)(nz_r_) ln(~~?-l) 
(1.7) 
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P 1 

Re rp 3.7488381 

Imrp 1.3843390 

P 11 

Re yp 19.579408 

Imrp 2.1833970 

P 21 

Re y, 35.307902 

Im 7, 2.476&020 

P 31 

Re rP 51.02’1838 

fm rP 2.6599693 

P 41 

Re yp 66.737923 

Im r, 2.7939639 

P 51 

Re rp 82.449231 

Imrp 2.8995’tZl 

P 61 

Re 7, 98.159562 

Im r, 2.9866716 

P 71 

3 5 7 9 
6.9499798 IO. 119259 K3.271274 16.429870 

1.6761046 1.8583834 1.9915705 2.0966252 

13 15 17 19 
22.727036 25.873384 29.018831 32.163617 
2.2573196 2.3217134 2.3’787569 2.4299576 

23 25 27 29 
38.451800 41.595390 44.738731 47.881869 
2.5188989 2.5580671) 2*5W3901 2.6282535 

33 35 37 
54.167664 57.310371 60 .L,j2Q7:; 

2.6897936 2.7179394 2.7445856 

39 

sn. 595487 

2.7CQ8KW 

43 45 

69.880291 73.0226~ 

2.8169378 2.8389026 

47 49 

76.164856 79.307064 

2.8599 Ii33 2.8801345 

53 55 57 59 
85.591359 88.733453 91.875516 95.017552 

2.9182217 2.9362345 2.9536?82 2.9704179 

63 65 67 69 

101.30155 104.44351 107.58546 110.72739 

3.0024137 3.0176753 3.0324849 3.0468686 

73 75 77 79 

120.15307 123.29494 t26.43680 

3 -0876925 3 * f~59~ 3.1131672 

Re y, 113.86930 117.01119 

Imrp 3.0~~0~ 3.0744514 

In order to exclude rigid body motion of the plate, we set B0 = 0. 

To determine cpz , we have an infinite set of linear algebraic equations 

&ST? (c=a 7t - toss rp) 

W-7 “)“(r --r ) P t P 

Iv (rt i r,P - (r, - 1,Fl cpI - + (&se yt -1) ct*=Ft* 

P+t 

(La) 
(t = 1, 2, 3, . . .) 

which may be written 

Here llMl[ is the 

--I 

in the form 

II M II - Iha II = II Ff, II (1.9) 

complex matrix of the left-hand side of (1.8) and llc& and llF,,[[ 
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are, respectively, the column matrix of the unknowns and that of the right-hand side of 

(1.8). 

To transform (1.8) into real form, set 

Cur = uPa - ivn, (1.10) 

Noting that yzn_t is the conjugate of yzn, it can be easily shown that 

%-1.2 = u2n,29 van-1,2 = - van,2 (n = 1, 2, 3,. . .) (1.11) 

so that the order of the real system is halved. If we limit ourselves to twenty boundary 

layers corresponding to first twenty roots yp lying in the right-hand side semi-plane, the 

order of the system will be equal to twenty. Introducing the notation 

f - CL Re F2,+1,2, 211-1,~ - k fm, 2 = -$ Im F2,_l,2 (1.12) 

(IIX1, 2, 3,. . .) 

IL --U P 
xm-l- k 27+1,2' --V x2n- k 2n-1,2 (1.13) 

we can write (1.9) in the form 

II Ml II . II “j II = II f jz II (1.14) 

where \lW,ll is th e matrix of the transformed real system. 

System (1.14) is solved by truncation. With the aid of a computer, matrices of rank 

20, 18, . . . , 4 were successively inverted. 

In [ll, ‘t I was shown that, for a given material, the matrix is universal, i.e. it is 

independent of the loading or geometry of the plate, so that the results of the matrix in- 

version may be used for any plate bending problem. The inverted matrices permit the de- 

termination of the first fourteen out of the twenty unknown x., the accuracy of the approxi- 

mation being insufficient for the remainder. Calculations we’re carried out for m = 3 and 

m = 5. The results are shown in Table 2. 

TABLE 2 

i 1 2 3 4 5 

xf=0.180170.10-2 -0.12745.10-3 0.1993.10-4 -0.7332.10” -0.797.10-5 

i 6 7 8 9 10 

m=3 xj=-On.9967.10-5 -0.400~10-5 -0.119.10-5 -0.177.10-5 0.15.10-6 

i 11 12 13 14 

x j= - 0.89.10-6 0.30.10-8 -0.42.10-6 0.23.10+ 

i 1 2 3 4 5 

xj=0.18609.10-2 -0.689.10-4 0.1785.10-3 -0.1152.10-a 0.119.10-4 

i 6 7 8 9 10 

m=5 xj= - 0.318.10-4 -0.18.10-5 -0.842.10-b -0.20.10-5 -0.24.10-S 

i 11 12 13 14 

xj=-o.12.10-5 -0.7.10-a -0.7.10-0 -0.2.10” 

To illustrate the rate of convergence of the process used in the determination of xi, 
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we list various approximations of zI, x2, zll and x1, as the most typical (Table 3). The 

superscript indicates the order the system from which the particular determination was 

made. 

TABLE 3 

n W -ri 
G 0.1803134.10-” 
8 0.1801734. IO-2 

10 0.1801719~10-2 
m=3 12 0.1801708.10-2 

14 0.1801705~10-2 
lG 0.1801703.10-3 
18 0.1801702. IO-2 
20 0.1801702~10-* 

G 0.187135.10-” 
8 0.186330.20-’ 

10 0.186181. IO-” 
m-5 12 0.186139.10-2 

1’1 0.186119.10-” 
IG 0.18G109.10-2 
18 (~.18GlO1.10-” 
20 0.186098.10-2 

(n) 
“13 

-0.128097.10-3 

-0.127J0 ‘i . IO-3 
-0.127338. IO-3 
_ 0.127381.10-3 
-0.127$10.10-3 
-0.127429.10-3 -0.458.10-6 0.28.10-6 
--0.1274339.10-3 -0.436.10-G O.25.1O-6 
--0.127143.10-3 -mO. 4.28. IO-6 0.24.10-e 

-0:69875. -0 731 $5. IO--’ lo-‘& 

-0. ti8719. IO-4 
-o.m7;2.10-1 
-0.fi8802. IO- 
4. KS’,‘, .1OW 

---0 . G&l . II I- 1 
--0.128.10-5 -0.83.10-7 
-0.74.10-” -0.13. IO-” 

-0.G8919.10~~ -0.70.2OP --0.16.10-” 

We will see later that the accuracy with which the xi were obtained is sufficient for 

practical purposes. 

Utilizing (1.1) to (1.4), we may now obtain a first approximation of all components 

of the state of stress in the plate. These contain the infinite series of the boundary layer 

formulation. Let us examine the rate of convergence of these series at the moat typical 

points. Here and hereinafter we denote the coefficients of hz in the series expressions 

for the stresses us, os and Tnz on r by ani, uSi and Tnzi, respectively. 

Substituting (1.7), (l.lO), (1.13) 

and (1.3), we obtain, for m = 3, 

and the values previously obtained for xi into (1.1) 

%I, I r.c=*1 = - + k{O.GOOO + 149.3082 - 1.924 - 2.792 - 1.806 - 

- I.102 - 0.69 - 0.45 -...].lO-2} z + k (0.6000 + 0.405) = + k-l.005 

Tnzllr,t=O = -k[7.4879-10.885+4.919 -2.179+ 0.919-0.31+0.06-. . .].10-2s 
Z- k.O.0001 

For m = 5, we obtain 

qr cc+1 = J- k (0.4286 + (52.492 -i- 13.056 - 0.044-1.80-1.68- 

1.28 - 0.9 -:..]:AO-2) _, + k (0.4286 -t 0.598) = tkl.027 

%*, Ir,+l = - k [5.38G - 11.684 -j- 10.42 - 6.63 -+ 4.0 - 2.5 + 1.4 - . . .] 10-2~ 

z - k0.004 

The boundary conditions yield 

c,,i I’,c=:*1 = + h,h, q,z /I’,<_ 0 = 0 (1.15) 

Comparing the immediately preceding results with (1.15), we see that even at the 

points [= f 1, where one would expect convergence to be the slowest, the series results 
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FIG. 2 

using seven terms do not differ significantly from the exact ones. At other points, con- 

vergence is even better. 

Fig. 2 shows curves of successive approximations for (~,,r[ f(c) using one, two and 

three boundary layer terms with m = 3. The straight lines in the figure correspond to the 

Kirchhoff solution; the broken line is the exact solution; curves 1, 2 and 3 correspond to 

solutions taking into account one, two and three boundary layer terms, respectively. 

Now let us calcnlate the first approximation of u,I r at the points [= f 1. This 

stress is usually the basis for determining the stress concentration factor. us/ r may be 

calculated from formula (1.2). but it is easily shown that’a first approximation of 

a,lr c= * 1 for arbitrary m may be obtained without solving the infinite system for the 

dete;ination of c . 

Substituting (1.27) into (1.1) and (1.2) and taking into account (1.11) as well as 

(Y - 1) RP (+I) + yr,$) (+I) = * W,,” = 2*s, (&I) 

we obtain 
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%I1 I r,c=*1= f k I “-+svp 2 
m + 2 Re Vrp2cp2) 

p=1, 3, . . . 
1 

be1 I r, I;-+1 - -fk (- &+4(v-l)+pzI,3, Ix 

But 

Re (THICK,) I 

Hence 

cn1I r, c=c1= f k 

2 Re (rp2cp,) 
k no-1 

p-1, 3, . . . 
8pv m-12 

Whereupon, we have 

QelJr.&-+l=fk -& + -- { 
v-l m-l 

2v m+2 1 
(1.16) 

In (1.16), the first term in the braces corresponds to the solution of applied theory. 

From (1.16) it is clear that in this case, form/= 1 of course, the exact stress concentra- 

tion factor is not obtained asymptotically from the Kirchhoff theory. The error of this 

theory, in the first approximation, increases as m increases. For m = 3, the error of applied 

theory is 22% ; for m = 5 it is 44% ; for m = 7 it is 66%, etc. 

At other points on the surface r the error will also not be small. Fig. 2 shows the 

curves of the function cSl\ p (5). as calculated by means of the Kirchhoff theory (straight 

line) as well as those using one, two and three boundary layer terms (1, 2 and 3). 

2. As discussed in [l], the next step in constructing the asymptotic expansion of the 

solution to the problem is the determination of I+$~ (n) and c 
P3’ 

The boundary conditions for $r (n) are given by 

From (2.1). we have 

(2.2) 

As before, we set B, = 0. The system of equations for cp3 has the form 

II M II . II ~13 II = II F t3 II 

(2.3) 

P+1 

(L==l, 2, :i,. .) 

Here llfnll is the same matrix asin system (1.8). The system (2.3) is solved in the 

same manner as system (1.9), noting that cZn 3 is the conjugate of czn_r 3 and setting 
. I 
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C2~-l,3- - $ (Yzn_1- iY*) (n=i, 2, 3,. . . ) 
(2.4) 

Thereupon, it is possible to obtain the values (Table 4) of the first ten unknown yi, 

as it is clear from (2.3) that with fourteen known values of xi the order of the truncated 

yi system will also be fourteen. 

TABLE 4 

j= 1 2 3 4 5 

~j=-0.36003.10-3 -O.5O72.1O-4 0.190.10-5 0.9050.10-5 0.200*10-6 

m=3 j= 6 7 8 9 10 

yj= 0.26.10-G 0.21.10-6 -0.5.10-7 0.11.10-6 -0.4*10-7 

i -= 1 2 3 4 5 

yj== - 0.37035.10-3 -0.6225.10-4 -0.1661.10-4 0.1155.10-4 0.38.10-a 

rn-= 5 j= 6 7 8 9 10 

yj= 0.221.10-5 0.48.10-a 0.33.10” 0.19.10-a 0.3.10-7 

TO illustrate the rate of convergence of the process determining yi, successive 

approximations of yI , ya, yp and yIO are shown (Table 5) 

TABLE 5 

4 -0.36050.10-3 

! 
-0.35991~10-3 
-0.35998.iO-3 

m=3 10 -0.36000.10-a 
12 -0.360014.10-3 
14 -0.360020.10-3 

4 -0.37288.10-3 
6 -0.37072.10-3 
8 -0.37037.10-3 

m = 5 10 -0.37036.10-3 
12 -0.370354.10-3 
14 -0.370352~10-3 

-0.4938. IO-* 
-0.50775.10-4 
-0.56738.10-4 
-0.50732.10-4 
-0.50726.10-4 O.lO8.1O-e -0.49.10-7 
-0.50724.10-4 0.1075.10-a -0.46.10-’ 

-0.61675.10-a 
-0.62075.10-8 
-0.62262.10-3 
-0.62258.10-a 
-0.62255.10-a 0.190.10-a 0.23.10-7 
-0.62253. 1O-3 0.191~10-a 0.27.10-7 

We may now determine the second approximations of the stress components. The con- 

vergence of the series in this step will now be checked. Substituting (2.2), (2.4) and the 

previously determined vafnes of y,. into (1.1) and (1.3). we obtain, for m = 3, 

u,~I~,~=~~= +k{[- ~1.7504+0.714+0.498+0.080+ 0.062+. . .]+ [10.71918- 
- 0.1446 - 0.1832 - 0.1518 - 0.0456 - 0.0242 - 0.0138 - . . .]} 1O-~z 

z + k (- 0.1040 + 0.1016) = T kO.0024 

%rza Ir,c=o = - k (if.3572 + 1.504 - 0.38: -j- 0.03 - 0.02 + . . .] + 
+ [- 2.03747 - 0.6441 + 0.2492 - 0.9939 + 0.0359 - 0.013 - 0.004 + . . .]} 10-g = 

= -k (0.0249 - 0.0251) = k 0.0002 
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while for m = 5, we shall have 

@Ttz Ir, L-3 1 =: -4; k {[- 12.3362 - 1.i650 + 0.290 + 0.242 + 0.126 -;- . . .] + 
+ (11.3542 + 1.4340 + 0.0244 - 0.0850 - 0.0664 - 9.0432 - 0.0254 - . . .]) 10-a z 

z + k (-0.1285 + 0.1259) = T kO.0026 

%z2 I'. c-0 = - k{(1.774+ 1.221--0.894+0.40-0.15+. . .]+ 
+ [-2.384 - 0.261 + 0.419 - 0.236 + 0.125 - 0.06 + 0.03 + . . .]} 10-Y 

z - k (0.0235 - 0.0237) = k0.0002 

Comparing the remits thus obtained with the values given in (1.15) for the stresses 

on and ~na on the boundary f, we find that convergence of the second approximation is 

also satisfactory. 

Now consider the stress aair. In a manner similar to that of section 1, it is readily 

ahown *ataalr, l= * t may also be obtained for the second approximation withont solv- 

ing the infinite system of equations to determine c pJ. Thus we obtain 

Calculations utilizing (2.5) yield, for m = 3, 

Gs2 r,c=+1 
i 

= f k $ j5.35959 - 0.0723 - 0.0916 - 0.0759 - 

--a0228 - 0.0121 - 0.0069 -...].2O_ZzJt k-0.135 

For m = 5, we obtain 

OS2 
I r, Z=ctl = $ k $ [5.6771 + 0.7170 + 0.0122 - 0.0425 - 

- 0.0332 - 0.0226 - 0.0127 --...].fO-a -u’F: k-O.168 

3. The third step of the construction of the asymptotic expansion deals with the 

determination of r+!~a (n) and cp4. The boundary conditions for $a (s) ara given by 

(3.1) 

From (3.1), we have 

(3.2) 

To determine c 
P4 

, we have the infinite system of equations with the previonsly 

given matrix, but, as previously discussed, it is easily shown that the third approxima- 

tion Of aa\r * <= f 1 may be obtained without the determination of c 
P- 

Thns, we obtain 

(3.3) 

Calculations utilizing (3.3) yield for m = 3, 
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c&, <=,l =i k”/s{[- 1.2423+ 0.0335+ 0.0170+ 0.0021 + 0.0013+. . .]+ 

+ ‘/,[1.64360 + 0.00538 - 0.0178 - 0.0034 - 0.0014 - 0.00065 - . . .]} 1O-2 zz 

=: _+ k.O.O1OO 

Form = 5, we obtain 

5s31 r, +*1 = T ks,h{[- 1.3005 - 0.06460 + 0.0090 + 0.0061 + 0.0026 + . . .] + 

+ l/z 11.7137 -to.1335 $0.00629 - 0.0022 - 0.0018 - 0.0010 - 0.0006 - . . .], 10-2~ 

=: + k 0.0113 

We now present a three-term approximation of the asymptotic expansions of 

q?, c= f 1 

(J, I r,i=_+1 = - 
+,k [- 0.4667 h - 0.135 112 + 0.0100h3 + . . .I for m = 3 (3.4) 

cI II’, ++-1 = f k [-. 0.2381 h - 0.168 k2 + 0.0113 h3 + . . .] for m = 5 t3 5) . 

From (3.4) and (3.5) it is clear that even for x = 2 (i.e. when the plate thickness is 

twice the diameter of the opening the third term in the expansion represents only 5% to 

8% of the sum of the first two terms. As a result, we can recommend for x < 2 that the 

determination of. the stress concentration factor be baaed on the first two terms of the 

expansion in powers of h. 

It is readily seen from (3.4) and (3.5) that, for x = 0.1, the sum of the next two terms 

is equal to 3% to 7% of the first term. Thus, for x < 0.1, the stress concentration factor 

for cS may be obtained from the following expression, 

v-l m-l 

6, I r,I;=,1- -fkh[-_++T- 
m+2 3 

(3.6) 

1. 

2. 

3. 
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