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Investigation is continued on the applicability of applied plate bending theory, based on
the Kirchhoff hypothesis, to the solution of stress concentration problems by means of the
method developedin [1 and 2.

1. Consider the problem of axisymmetric bending of an infinite plate of a thickness
2k with an opening which is bounded by the circular cylindrical surface I with radius a.
Introduce dimensionless coordinates s, n and { (Fig. 1). Assume that the flat faces of the
plate are traction-free while the cylindrical surface is subjected to a normal load N=k AL ™,
and is free of shear. Here, m is an odd integer, & is a constant of proportionality and

A=h/a.

Applying the method described in [1 and 2], we obtain expressions for the stresses on
the boundary I", which are of the form
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Here 1 is the shear modulus, o is Poisson’s
ratio (in calculations ¢ = 1/3); n, %), rp ),
sy (£), and & ({) are known functions of {
glven in [1 and 3], 2y_ are the roots of function

%~ ! sin (x) — 1. Summation is carried out over

the roots which have a positive real part.
The first 80 of these roots were obtained
with aid of an electronic computer. Table 1 con-

tains the values of forty roots which are located

in the first quadrant. The roots in the fourth
quadrant are conjugates of the above. The roots
FIG. 1 are numbered in the order of increasing magnitude,
the odd-numbered roots being those in the first
quadrant while the even~numbered roots are in the fourth quadrant.

In (1.1) to (1.4), the quantities ¢/, (n) are biharmonic functions for the exterior of a
circle, with i/, (n) being the solution for the bending of an infinite plate with a circular
opening as given by the applied theory. The boundary values of the functions (ﬂ (n) and
the constants c_. are obtained from the boundary conditions on I" by means of an infinite

pj
system of equations.

The boundary conditions for /4 (n) are given by
[, P oWl _ k4 adwm|  _
B} [ZV g PO T W Im T on | em—0 (1O
It is readily seen that the above coincide with the conditions of the applied plate
bending theory based on the Kirchhoff hypothesis.
From (1.6), we have

k 3 ‘
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P 1
Rey, 3.7488381
Imy, 1.3843390

r 11
I{eyp 19.579408
Imy, 2.1833970

P 21
Re 1, 35.307902
Im Tp 2.4764020

P 3
Re, 51.021838
IHITD 2.6599693

p 41
Re Tp 66.737923
Imy, 2.7939639

p 51
Rey, 82.449231
Imy, 2.8995%21

P 61
Re, 98.159562
Imry, 2.9866716

P 7
Re 7, 113.86930
Imy, 3.0608501
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6.9499798
1.6761046

13
22.727036
2.2573196

23
38.451800
2.5188989

33
54.167664
2.6897936

43
69.880291
2.8169378

53
85.591359
2.9182247

63
101.30155
3.0024137

73
117.01149
3.0744514

TABLE 1

5
10.119259
1.8583834

15
25.873384
2.3217134

25
41,595390
2.5580670
35
57.310371

2.7179394

45
73.022600
2.8389025

55
88.733453
2.9362345

65

104, 44351
3.0176753

75
120.15307
3.0876925

7
13.277274
1.991570%

17
29.018831
2.3787569

27
44.738731
2.5943901

47
76.164856
2.8599433

57
91,875516
2.9536182

67
107.58546
3.0324849

77
123.29494
3.1005920

9
16.429870
2.0966252

19
32.463617
2.4299576

29
47.881869
2.6282535

39
53.595487
2.7008838

49
79.307064
2.8801345

59
95.017552
2.9704179

69
110.72739
3.0468686

79
126.43680
3.1131672

In order to exclude rigid body motion of the plate, we set By =0.

To determine ¢, we have an infinite set of linear algebraic equations
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which may be written in the form
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(1.8)

(t—_—i, 2, 3,.. -)

(1.9

Here ||M|| is the complex matrix of the left-hand side of (1.8) and |[c,,|| and ||F,,||
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are, respectively, the column matrix of the unknowns and that of the right-hand side of
(1.8).

To transform (1.8) into real form, set
Cpa = Upg — iVp, (1.10)
Noting that y, . is the conjugate of y, , it can be easily shown that
Upn1,2 = Yan2  Van-1,2 = — Yane (r=1,2,3,..) (1.11)

so that the order of the real system is halved. If we limit ourselves to twenty boundary
layers corresponding to first twenty roots ¥ _ lying in the right-hand side semi-plane, the
order of the system will be equal to twenty. Introducing the notation

B

fanaa="1ReFaio  foma=-rImFy g (1.12)
(n=1,23,...)
Zon-1 = _}]t— Ugn—1,90 Zan = _‘/:“ Von-1,2 (1.13)
we can write (1.9) in the form
I Myl =1l (1.14)

where ||M,|| is the matrix of the transformed real system.

System {1.14) is solved by truncation. With the aid of a computer, matrices of rank
20, 18, ... , 4 were successively inverted.

In [1], it was shown that, for a given material, the matrix is universal, i.e. it is
independent of the loading or geometry of the plate, so that the results of the matrix in-
version may be used for any plate bending problem. The inverted matrices permit the de-
termination of the firat fourteen out of the twenty unknown x., the accuracy of the approxi-
mation being insufficient for the remainder. Calculations were carried out for m =3 and
m = 5. The results are shown in Table 2.

TABLE 2
i 1 2 3 4 5
z;=0.180170-10-2 —0.12745-40"  0.1993.10~¢ —0.7332-10¢ —0.797-10"5
i 6 7 8 9 10
m=3 z;— —0.9967-10-> —0.400.10- —0.119.105 —0.177.10~  0.15.10~°
i 11 12 13 14
2= — 0.83.10- 0.30.108  —0.42.10~¢  0.23.10-8
i 1 2 3 4 5
z;=0.18609-10-2 —0.689.10~  0.1785.10-* —0.1152-10~ 0.119-10"¢
i 6 7 8 9 10
m=5 ¢;=—0.318.10% —0.18.107 -0.842.10-5 —0.20.10~5 —0.24.10"%
i 11 12 13 14
g, =—0.12.108  —0.7-10% —0.7.10"% —0.2.10-

7

To illustrate the rate of convergence of the process used in the determination of x.,
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we list various approximations of x,, %,, x,; and x,4 as the most typical (Table 3). The
superscript indicates the order the system from which the particular determination was

made.
TABLE .3
. o X 4
6 0.1803134-10-2 —0.128097.10-3
8 0.1801734.102 —0.127304-10"8
10 0.1801719.102  —-0.127338.10°3
m=3 12 0.1801708-10-2 —.0.127381.10-3
14 0.1801705-10—2 —0.127410.10~3
16 0.1801703-10—2 —0-127429.10"3 _0,458.10-¢ 0.28.10-¢
18 0.1801702-10~2 —0.127439.10"3% ._0.436.10~ 0.25-10-¢
20 0.1801702-10-2  —0.127443-10"3 —0.428.10~6 0.24.10-¢
6 0.187135.10- —0.73145.101
8 0.186330-10-2 —0.69875.10-4
10 0.186181.10~2 —0.68719. 10—+
m==h 12 0.186139.10~2 —0.68712. 101
14 0.186119.10~2 —0.68802 10~
16 0.186109.10-2 --0.68855.10—% —0.128.10-5 —0.83.107
18 0.186101-10~2 —0.68893.10-*  —0,74.10-% —0.13.10-5
20 0.186098.10~2 —0-68919.10¢ —0.70.10"¢ —0.16.40"%

We will see later that the accuracy with which the x]. were obtained is sufficient for
practical purposes.

Utilizing (1.1) to (1.4), we may now obtain a first approximation of all components
of the state of stress in the plate. These contain the infinite series of the boundary layer
formulation. Let us examine the rate of convergence of these series at the most typical
points. Here and hereinafter we denote the coefficients of A* in the series expressions
for the stresses o, , 0, and 7, on T by Opis Og; 804 T 0y respectively.

Substituting (1.7), (1.10), (1.13) and the values previously obtained for %; into (1.1)
and (1.3), we obtain, form =3,

Op | r gt = + % {0.6000 - [49.3082 — 1.924 — 2.792 — 1.806 —
— 1,102 — 0.69 — 0.45 —...]-1072} =~ -4-k (0.6000 -+ 0.405) = -+ k-1.005
= —k [7.4879 —10.885 4 4.919 — 2.179 + 0919 —0.31 - 0.06 — . . .]- 102~

Tnz.'I‘,K:O
~ — k-0.0001

For m =5, we obtain

Tl = -+ £ {0.4286 + [52.492 - 13.056 — 0.044—1.80—1.68—
1.28 — 0.9 —...]- 1072} ~ - k (0.4286 - 0.598) = +41.027
Tnz.II‘,i: = — k [5.386 — 11.684 + 10.42 — 6.63 + 4.0 — 2.5 - 1.4 — ., .] 102~
=~ — k0.004

The boundary conditions yield

Ol pgeys = A Tz lppg =0 (1.15)

Comparing the immediately preceding results with (1.15), we see that even at the
points {= t1, where one would expect convergence to be the slowest, the series results
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using seven terms do not differ significantly from the exact ones. At other points, con-
vergence is even better.

Fig. 2 shows curves of successive approximations for 0,/ r{f) using one, two and
three boundary layer terms with m = 3. The straight lines in the figure correspond to the
Kirchhoff solution ; the broken line is the exact solution; curves 1, 2 and 3 correspond to
solutions taking into account one, two and three boundary layer tems, respectively.

Now let us calcunlate the first approximation of 0| at the points =t 1. This
stress is usually the basis for determining the stress concentration factor. g, p may be
calculated from formula (1.2), but it is easily shown that’a first approximation of

asIF, =11 for arbitrary m may be obtained without solving the infinite system for the

determination of ¢__,
p2

Substituting (1.7) into (1.1) and (1.2) and taking into account (1.11) as well as

(v — 1) 5, (1) + ypinp (H1) = 4 2vy,* = 2vs;, (1)

we obtain



1152 0.K. Aksentian

3
ni|rg=pa =214 {m T3 8 % 2 Re (Tp%pz)}

p=1,3, ...

3
A e e T E Re (1, |

P=1, 3, ...
But
Sni|rt=r1= % k

Hence

E m—1
E Re(y 2 ) = g —p
p=1,3, .. P P v m -+ 2

Whereupon, we have

V_lm*1} (1.16)

81'P,t—+1 ik{ ,n+z+ oy )

In (1.16), the first term in the braces corresponds to the solution of applied theory.
From (1.16) it is clear that in this case, for m 4 1 of course, the exact stress concentra-
tion factor is not obtained asymptotically from the Kirchhoff theory. The error of this
theory, in the first approximation, increases as m increases. For m = 3, the error of applied
theory is 22%; for m =5 it is 44%; for m =7 it is 66%, etc.

At other points on the surface I the error will also not be small. Fig. 2 shows the
curves of the function Oyl p (), as calculated by means of the Kirchhoff theory (straight
line) as well as those using one, two and three boundary layer terms (1, 2 and 3).

2. As discussed in [1], the next step in constructing the asymptotic expansion of the
solution to the problem is the determination of i, (n) and ¢

p3’
The boundary conditions for i/, (n) are given by
2. sin? T AP
1 "~ o2 lpl \Pl ilp A1 .
[2\2 on? +v—1) 5, an ]11:—0 =(—1) 2 Tp py M n=0 9 @

From (2.1), we have

[ee]
1 sin?y
B—3" e o ln 1
nERTI T 21 r minetd (2.2)

As before, we set B, = 0. The system of equations for 3 has the form

IMY - Jesll = F sl

. 0 s oo
F;g:ﬁ(v—1)‘-’sm27! Z s® 1, ¢ 4 f F,2 42 2 cos? Y, — cos? 'rp

Y, X
Tt p=1 Tp ZT pe=1 T[z - T]J th (2'3)
Pt
(1= ) 2 ‘
X l:i—wm](-p:—?‘v']’f <1 +v— 5 veosty /\r“ (t=1, 2,3, ...)

Here ||M|| is the same matrix as in system (1.8). The system (2.3) is solved in the

same manner as system (1.9), noting that €,p 3 is the conjugate of ¢, . and setting
t4 ’
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Con-1,37 T (Ygn—y — Yan) (n=1,2,3,...) (2.4)

Thereupon, it is possible to obtain the values (Table 4) of the first ten unknown Vi

as it is clear from (2.3) that with fourteen known values of % the order of the truncated

¥, system will also be fourteen.

TABLE 4
j— 1 2 3 4 5
j=— 0.36003-10-3 —0,5072.107¢ 0.190-10-5 0.9050-10-5 0,200.10-%
m=3j= 6 7 8 9 10
g;= 0.26-107 0.21.10-¢  —0.5-10-*  0.41.10¢ —0.4.10"7

gj_—_——0.37035-10'3 —0.6225-10-¢ —0.1661.10~¢ 0.1155.10-% 0.38.10-¢

y= 0.221-1073 0.48-10-8 0.33-10°¢ 0.19.10-¢ 0.3-10~7

To illustrate the rate of convergence of the process determining yl., successive

approximations of y;, y2, ¥ and y;, are shown (Table 5)

TABLE 3
ooy W) u5” vio
4 —0.36050-10-3  —0.4938.10~
6 —0.35991-10-3  —0.50775.10¢
8 —0.35998-10-3  —0.56738-107
m=3 10 —0.36000.10-3  —0.50732.10~4
12 —0.360014-10-3 —0.50726.10~% 0.108-10~¢  —0.49.10~7
14 —0.360020-10~% —0.50724.10-4 0.1075-10~% —0.46-10~7
4 —0.37288-10"  —0.61675-10°°
6 —0.37072.10-8  —0.62075.10~°
8 —0.37037-10-3  —0.62262.107

m=5 10 —0.37036-10"3 —0.62258.10~3
12 —0.370354-10"%  —0.62255-10~3 0.190-10-° 3231

0-7
14 —0,370352-10-3 —0.62253-10"3 0.191-.10°8 27-1077

We may now determine the second approximations of the stress components. The con-
vergence of the series in this step will now be checked. Substituting (2.2), (2.4) and the

previously determined values of v into (1.1) and (1.3), we obtain, for m = 3,
Ona |p,§=i1 = + k{[— 41.7504 4 0.714 + 0.498 + 0.080 + 0.062 + . . .]+4- [10.71948 —
— 0.1446 — 0.1832 — 0.1518 — 0.0456 — 0.0242 — 0.0138 — .. .} 102~
~ 4 k (— 0.1040 + 0.1016) = T ¥0.0024

Yo rcmo = — k {[1.3572 + 1.504 — 0.381 4 0.03 — 0.02 + .. .] +
+ [— 2.03747 — 0.6441 + 0.2492 — 0.0939 + 0.0359 — 0.013 — 0.004 + . . .1} 10" =~
~ —k (0.0249 — 0.0251) = k 0.0002
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while for m =5, we shall have

nelr, gma g = -k {[— 12.3382 — 1.1650 + 0.290 +- 0.242 + 0.126 - . . ]+
+ [ 3542 -+ 1.4340 + 0.0244 — 0.0850 — 0.0664 — 0.0432 — 0.0254 — .. . ]} 1072 =~

~ 4k (—0.1285 + 0.1259) = IF £0.0026
Toga |1 oo = — k{[1.774 + £.221 — 0.894 + 0.40 — 0.15 + .. .1+
¥ [—2.384 — 0.261 + 0.419 — 0.236 + 0.425 — 0.06 + 0.03 + . . .] 102~

~ — k (0.0235 — 0.0237) = £0.0002

Comparing the results thus obtained with the values given in (1.15) for the stresses
g, and 7 on the boundary T', we find that convergence of the second approximation is
also satisfactory.

Now consider the stress o0 In a manner similar to that of section 1, it is readily
shown that asle' (=1 M3y also be obtained for the second approximation without solv-

ing the infinite system of equations to determine Cp3 - Thus we obtain

— - in2
6-2lr,t=¢1=¢}‘3v py ! 2 Re {LG(\Mi) 83%%-{—27;,% (1)] cp’} {2.5)

D=1, 3, ...

Calculations utilizing (2.5) yield, form =3,

Salr, et =F Kk o 535950 — 0.0723 — 0.0916 — 0.0759 —

—0.0228 — 0.0121 — 0.0069 —...]- 102 =~ T &¥-0.135

For m =5, we obtain

g =T k % [5.6771 + 0.7170 - 0.0122 — 0.0425 —

— 0.0332 — 0.0216 — 0.0127 —...]- 107 =~ F k-0.168

$2 | T, E=r 1

3. The third step of the construction of the asymptotic expansion deals with the
determination of y, {n) and oy The boundary conditions for i, () are given by

3.0
P w sin? 1 A
1 P q p( P2
o | D4y X —1 i _
3 [2\) nt v — 1) ()n —|n~0 )I; cpa+ ZTp sz) 4 an \n:‘)—O
From (3.1}, we have
oo
L 3{v—1) sin? Tp iR
ez = =g 21 T ( ns "f; ‘ )1"(” 1) ©.2

To determine cp4, we have the infinite system of equations with the previously
given matrix, but, as previously discussed, it is easily shown that the third approxima-
tion of os!F, $= 41 MY be obtained without the determination of cp‘. Thus, we obtain

(3.3)
sinyp |

3v—1 N 1 Lo 1 ’ 1.-}—
Seg| vyt = FRTTGT ;,,;1‘_; Re H’(V_ ) To PN )_ Cpy ™ 21, “p.

Calculations utilizing (3.3) yield for m = 3,
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Oulp, g=t1 = + k%3 {[— 1.2423 4- 0.0335 +- 0.0170 +- 0.0021 + 0.0013 + .. .]+

+ 1/,[1.64360 + 0.00538 — 0.0178 — 0.0034 — 0.0014 — 0.00065 — . . .]} 10~2 ~
~ + k-0.0100

For m =5, we obtain

93| 1, geegy = -+ k33 {[— 1.3005 — 0.06460 + 0.0090 + 0.0061 4 0.0026 + . ..] +

+ 2 [1.7137 0.1335 +-0.00629 — 0.0022 — 0.0018 — 0.0010 — 0.0006 — . . .J} 10~% ~
~ 4 £ 0.0113

We now present a three-term approximation of the asymptotic expansions of

aélF, ¢= +1

— 4k [— 0.4667 % — 043522+ 0.000A3 + ...] for m=3 B4

95 | rg=at1
= k(- 02381 A— 046822+ 0.013A8 +...] for m=35 (q¢

O, t=a1

From (3.4) and (3.5) it is clear that even for A = 2 (i.e. when the plate thickness is
twice the diameter of the opening the third term in the expansion represents only 5% to
8% of the sum of the first two terms. As a result, we can recommend for A < 2 that the
determination of the stress concentration factor be based on the first two terms of the
expansion in powers of A.

It is readily seen from (3.4) and (3.5) that, for A = 0.1, the sum of the next two terms
is equal to 3% to 7% of the first term. Thus, for A < 0.1, the stress concentration factor
for o, may be obtained from the following expression,

3 v—1 m—1
GSII‘,’C=i1zik}"|:—m+2+ e m+2] (3.6)
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